Table 2. Bond distances (Å) and selected angles (°)

 with e.s.d.'s in parentheses

All other angles involving C and I atoms are in the range $108.0-110.0^{\circ}$.

C1C2	1.545 (8)	C6-C10	1.532 (5)
C1-C9	1.513 (8)	C7–C8	1.531 (7)
C1-C10	1.533 (7)	C8—C9	1.531 (6)
C2—C3	1.555 (5)	C11-C12	1.538 (7)
C3—C4	1.539 (5)	C11-C13	1.535 (5)
C3-C8	1.577 (6)	C11-C14	1.550 (8)
C3-C11	1.574 (6)	C15-C16	1.540 (5)
C4—C5	1.529 (5)	C15-C17	1.512 (7)
C5-C6	1.555 (6)	C15-C18	1.541 (8)
C5-C15	1.555 (5)	I—C10	2.190 (5)
C6—C7	1.537 (7)		
C2-C1-C9	100.4 (4)	C2-C3-C11	112.6 (3)
C1C2C3	105.6 (4)	C8-C3-C11	112.0 (4)
C2—C3—C8	102.8 (3)	C3-C4-C5	112.9 (3)
C3-C8-C9	104.5 (3)	C4-C5-C15	115.2 (3)
С7—С8—С9	107.0 (4)	C6-C5-C15	112.6 (4)
C1-C9-C8	101.0 (4)	C1-C10C6	113.8 (4)
C12-C11-C13	107.3 (4)	C3C11C12	113.0 (4)
C12-C11-C14	106.9 (4)	C3-C11-C13	111.7 (3)
C16-C15-C18	106.5 (5)	C5-C15-C17	114.2 (4)

two *tert*-butyl substituents, in the boat conformation. Both *tert*-butyl groups are in – antiperiplanar conformations $[C5-C4-C3-C11 - 171.6 (3), C3-C4-C5-C15 - 167.7 (3)^{\circ}]$. The conformation for sequence C7-C6-C10-I is – synclinal $[-80.6 (4)^{\circ}]$. Support of this research by the Council for Scientific Research of Croatia, and KFA Jülich, Germany, is gratefully acknowledged.

References

- B. A. FRENZ & ASSOCIATES, INC. (1985). SDP Structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
- CROMER, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- CROMER, D. T. & WABER, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- DUDDECK, H., MCKERVEY, M. A. & ROSENBAUM, D. (1990). Tetrahedron Lett. 31, 4061–4064.
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- KILLEAN, R. C. G. & LAWRENCE, J. L. (1969). Acta Cryst. B25, 1750–1752.
- McKervey, M. A. (1980). Tetrahedron, 36, 971-992.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- NARDELLI, M. (1983). Comput. Chem. 7, 95-98.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
- WAHL, H. JR, GREENE, R. L. & BORDNER, J. (1974). J. Chem. Soc. Chem. Commun. pp. 927–928.

Acta Cryst. (1992). C48, 133-135

Structure du Diammonium-1,3 Propane Bis(dihydrogénomonophosphate)

Par S. Kamoun

Ecole Nationale d'Ingénieurs de Sfax, 3038 Sfax, Tunisie

A. JOUINI

Faculté des Sciences de Monastir, 5000 Monastir, Tunisie

A. DAOUD

Ecole Nationale d'Ingénieurs de Sfax, 3038 Sfax, Tunisie

ET A. DURIF ET J. C. GUITEL

Laboratoire de Cristallographie, CNRS, Laboratoire associé à l'USTMG, 166 C, 38042 Grenoble CEDEX, France

(Reçu le 6 mars 1991, accepté le 3 juillet 1991)

Abstract. 1,3-Propanediammonium bis(dihydrogenmonophosphate), $C_3H_{12}N_2^{2+}.2H_2PO_4^-$, $M_r = 270.12$, monoclinic, Cc, a = 18.543 (3), b = 4.561 (4), c =15.342 (3) Å, $\beta = 129.14$ (1)°, V = 1006.5 (7) Å³, Z =4, $D_m = 1.729$, $D_x = 1.782$ Mg m⁻³, λ (Ag $K\alpha$) = 0.56087 Å, $\mu = 2.356 \text{ mm}^{-1}$, F(000) = 568, T = 298 K, final R = 0.027 for 3362 independent reflexions. The structure shows a layer arrangement parallel to the *b* axis: planes of $[\text{H}_2\text{PO}_4]^-$ tetrahedra alternate with planes of $[(\text{CH}_2)_3(\text{NH}_3)_2]^{2+}$ groups.

0108-2701/92/010133-03\$03.00

© 1992 International Union of Crystallography

 $[H_2PO_4]^-$ tetrahedra are connected through OH…O hydrogen honds so that infinite chains of composition $[H_2PO_4]_n^{n-}$ are formed parallel to the *b* axis. The chains are themselves interconnected by means of weak N—H…O hydrogen bonds originating from the $[(CH_2)_3(NH_3)_2]^{2+}$ dications, forming a three-dimensional network. The 1,3-propanediammonium group has a *trans* configuration with a non-crystallographic inversion centre.

Introduction. Au cours de l'étude de l'interaction entre l'acide monophosphorique H_3PO_4 et le diamino-1,3 propane $NH_2(CH_2)_3NH_2$, nous avons récemment décrit la structure cristalline du sel dibasique $NH_3(CH_2)_3NH_3.HPO_4.H_2O$ (Kamoun, Jouini & Daoud, 1990) obtenu avec un rapport stoechiométrique amine/acide monophospherique de 1/1. Dans le présent travail, nous décrivons la structure cristalline du monophosphate monobasique $NH_3(CH_2)_3NH_3.2H_2PO_4$ obtenu avec un rapport stoechiométrique amine/acide monophosphorique de 1/2.

Partie expérimentale. Les monocristaux du diammonium-1,3 propane bis(dihydrogénomonophosphate) sont obtenus par évaporation lente, à température ambiante, d'un mélange d'une solution d'acide monophosphorique et de diamino-1,3 propane dans des proportions stoechiométriques. Les monocristaux obtenus sont incolores et de forme parallélipipédique. Dimensions du cristal $0.2 \times 0.25 \times 0.19$ mm; CAD-4, monochromator graphite; paramètres cristallins obtenus avec 25 réflexions ($10 < \theta < 15^{\circ}$); D_m : pycnométrie, le liquide: bromobenzene. Domaine de mesure 2 à $35^{\circ}(\theta)$; type de balayage ω ; domaine de balayage 1,2°; vitesse de balayage 0,03° s⁻¹; réflexions de référence 626 et 626, variation négligeable; mesure du fond continu variable; temps maximal 10 s; nombre de réflexions mesurées: 4546 (±h,kl), $h_{\text{max}} = 38$, $k_{\text{max}} = 9$, $l_{\text{max}} = 31$; correction de Lorentz-polarization; aucune correction d'absorption. La structure a été déterminée par exploitation de la fonction de Patterson et synthèses de Fourier successives; $\sum w(|F_o| - |F_c|)^2$ minimisée. Les derniers cycles d'affinements par moindres carrés à matrice complète sont effectués à l'aide de 3362 raies retenues correspondant à $F > 3\sigma(F)$. Pour tous les affinements, un schéma de pondération unitaire a été utilisé: facteurs de diffusion atomique et termes de dispersion f' et f'' (International Tables for X-ray Crystallography, 1974, Tome IV); programmes SDP (Enraf-Nonius, 1980); calculs effectués sur MicroVAX 2000. Coordonnées atomiques, coefficients de température isotropes pour les atomes d'hydrogène, anisotropes pour les non hydrogène, facteur d'échelle affiné $(\Delta/\sigma)_{max} = 0,13$; extinction non affinée; R = 0.027, wR = 0.032; S = 0.29; $\Delta \rho_{max}$ Tableau 1. Coordonnées atomiques et facteurs d'agitation thermiques équivalents (Å²) dans NH₃-(CH₂)₃NH₃.2H₂PO₄

> Les déviations standards sont données entre parenthèses. $B_{i\alpha} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \mathbf{a}_j.$

	x	у	Z	$B_{\dot{e}q}$
P(1)	0,000	0,40042 (8)	0,0000	1.080 (4)
2(2)	0,62256 (2)	0,59922 (8)	-0,15153 (2)	1,036 (4)
D(11)	0,07353 (6)	0,8340 (2)	0,54488 (7)	1,44 (1)
D(12)	-0,02035 (6)	0,5501 (3)	-0,10592 (7)	1,65 (2)
D(13)	-0,03879 (7)	-0,6510 (2)	- 0,08907 (7)	2,00 (2)
D(14)	-0,09022 (6)	-0,3026 (3)	-0,02809 (8)	2,06 (2)
D(21)	0,07738 (7)	0,1513 (2)	0,25810 (7)	1,76 (2)
D(22)	0,54853 (6)	0,8360 (2)	- 0,19710 (7)	1,47 (1)
D(23)	0,21012 (6)	0,2086 (3)	-0,12361 (8)	2,18 (2)
D(24)	0,64364 (6)	0,5463 (3)	0,45542 (7)	1,78 (2)
N(1)	0,38103 (6)	0,6017 (3)	0,57926 (8)	1,67 (2)
N(2)	0,24062 (7)	0,6053 (3)	- 0,23279 (8)	1,63 (2)
C(1)	-0,15164 (8)	0,0868 (4)	0,1302 (1)	1,93 (2)
C(2)	0,3118 (3)	0,3923 (3)	0,1747 (4)	1,77 (1)
C(3)	0,77754 (8)	0,0742 (3)	0,2251 (1)	1,57 (2)

= 0,19 e Å⁻³ localisée au voisinage de l'atome du phosphore P(1).

Discussion. Les coordonnées atomiques et les facteurs d'agitation thermiques équivalents sont consignés dans le Tableau 1.* Les Figs. 1 et 2 représentent, respectivement, les projections de la structure cristalline de NH₃(CH₂)₃NH₃.2H₂PO₄ sur les plans bc et ac. On observe un arrangement en couches: les plans des groupements dihydrogénomonophosphate $[H_2PO_4]^-$ alternent avec ceux des groupements organiques $[(CH_2)_3(NH_3)_2]^{2+}$. L'examen de la structure montre que les groupements minéraux [H₂PO₄]⁻ occupent deux sites cristallographiques indépendants. Ces groupements sont situés sur des plans perpendiculaires à l'axe c placés en z=0 et $z=\frac{1}{2}$ (Fig. 1). Les distances et les angles de liaison décrivant ces groupements sont rassemblés dans le Tableau 2. Les valeurs extrêmes des distances P-O 1,481(1) et 1,574(1) Å sont voisines de celles observées dans NH₃(CH₂)₂NH₃.2H₂PO₄ (Kamoun, Jouini, Kamoun & Daoud, 1989) et NH₃(CH₂)₄NH₃.-2H₂PO₄ (Takusagawa & Koetzle, 1978, 1979). Les plus grandes distances P-O mesurées, 1,574 (1), 1565(1), 1,570(1) et 1,574(1)Å, sont dues à la localisation des protons acides sur les oxygènes des tétraèdres $P(1)O_4$ et $P(2)O_4$. Les groupements $[H_2PO_4]^-$ sont liés entre eux, par de fortes liaisons par pont hydrogène formant des chaines infinies: $[H_2PO_4]_n^{n-}$ se développant le long de l'axe b. La plus courte distance P-P est de 4,376 (2) Å.

^{*} Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope, et des distances interatomique, des angles des liaisons, des coordonnées atomique et B_{iso} des atomes d'hydrogène ont été déposées au dépôt d'archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 54431: 31 pp.). On peut en obtenir des copies en s'adressant à: The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Les cations organiques $[(CH_2)_3(NH_3)_2]^{2+}$ sont situés sur des plans perpendiculaires à l'axe c placés en $z = \frac{1}{4}$ et $z = \frac{3}{4}$. Ces groupements, n'ayant aucune symétrie locale, se présentent sous formes de chaînes carbonées en zigzag et possèdent une configuration à trans identique celle observée dans NH₃(CH₂)₃NH₃.HPO₄.H₂O (Kamoun, Jouini & Daoud, 1990). Chaque azote terminal du groupement $[(CH_2)_3(NH_3)_2]^{2+}$ partage au moyen de ses protons trois liaisons par pont hydrogène du type N-H...O avec les atomes d'oxygène de trois groupements [H₂PO₄]⁻ appartenant respectivement à trois chaînes distinctes, formant ainsi un réseau tridimensionnel (Fig. 2). Les distances et les angles décrivant les liaisons hydrogènes sont données dans le Tableau 2. L'ensemble des distances O(N)...O vaire entre 2,483 (2) et 3,017 (1) Å. La force de la liaison hydrogène peut être interpretée selon le critère portant sur les distances O(N)···O: $d_{O(N)\cdots O} > 2,73$ Å faible,

Fig. 1. Projection le long de l'axe a de l'arrangement atomique de $NH_3(CH_2)_3NH_3.2H_2PO_4.$

Fig. 2. Projection le long de l'axe b de l'arrangement atomique de $NH_3(CH_2)_3NH_3.2H_2PO_4$.

Tableau 2. Distances interatomiques (Å) et angles des liaisons (°) dans NH₃(CH₂)₃NH₃.2H₂PO₄

Les déviations standards sont données entre parenthèses.

Groupemer	nt dihy	/drogén	omonophos	phate			
Tetraeure r	(1)04		0.110		~ ~ ~ ~		
P(1)	0(11)		O(12)	0(13)	O(14)		
0(11)	1,514	$\underline{\mathbf{n}}$	109,61 (6)	109,49 (5) 116,05	(7)	
0(12)	2,524	(1)	1,574 (1)	105,26 (5) 109,55	(6)	
0(13)	2,515	(2)	2,495 (2)	1,565 (1	106,28	(8)	
O(14)	2,364	(2)	2,518 (2)	2,459 (2	1,508	<u>1)</u>	
O(12)—H(O)	12)	0,97 (4)		P(1)-	-O(12)—H(O	12) 115	5 (2)
O(13)—H(O	(3)	0,98 (5))	P(1)-	-O(13)—H(O	3) 112	3 (3)
Tétraèdre I	200						
P(2)	0(21)		0(22)	0(23)	0(24)		
O(21)	1 570	a)	106 68 (5)	112 12 (R) 104.88	(7)	
0(22)	2 483	$\frac{\overline{(2)}}{\overline{(2)}}$	1 526 (1)	113 53 (7) 109,58	(7)	
0(23)	2 531	(2)	$\frac{1,525(1)}{2,515(2)}$	1 481 (1	109.65	(6)	
O(24)	2,492	(2)	2,533 (2)	2,497 (2	1,574	1)	
O(21)—H(O2	21)	0,74 (5))	P(2)-	-O(21)—H(O	21) 114	+ (3)
O(24)—H(O2	24)	0,65 (6))	P(2)—	-O(24)—H(O	24) 120) (3)
P(1)—P(2)		4,3762	(4)				
Groupemer	nt diar	nmoniu	im-1.3 propa	ine			
$N(1) \rightarrow C(1)$		1.522 (3)	N(1)-	-C(1)-C(2)	109.7 (2))
C(1) - C(2) 1.516 (1.516 (5)	C(1) - C(2) - C(3) = 11		mià	Ď
C(2) - C(3)		1.521 (5)	$\dot{c}(2)$	-C(3)-N(2)	112.6 (2	ń
C(3)—N(2) 1,455 (2)		2)	.,				
··· ·							
Liaisons hy	aroge	nes				0 0	
			J(N)—H	HO(N) U(N).	0 0	N)H…C
O(12)—H(O	12)····O(22)	0,97 (4)	1,65 (4)	2,609 (2)	170 (2)
0(13)—H(0	(3)O(11)	0,99 (4)	1,66 (4)	2,635 (2)	168 (4)
O(21) - H(O, O(21)) - H(O, O	21)····O(22)	0,74 (5)	1,86 (5)	2,483 (2)	169 (5)
0(24)—H(0.	24)…U(11)	0,65 (5)	1,98 (5)	2,602 (2)	160 (4)
N(1) - H(1)	1) - O(2)	(3)	1.04(3)	1,88 (2)	2,832 (1)	151 (3)
N(1) - H(2N)	$1)^{}O(1)$	4)	0,95 (5)	1,84 (5)	2,741 (2)	157 (3)
$N(1) = \Pi(3N)$	1)	1)	0.70 (3)	2,11(3)	3,017 (1)	150 (5)
N(2) = H(2N)	2,	1)	0,77(3)	2,24 (2)	2,990 (1) 2)	105 (4)
N(2) = H(2N)	2)O(1	. <i></i>	0,07 (3)	2 16 (2)	2,737 (2) 1)	151 (3)
14(2) -11(314	2, 0(1	-,	0,70(3)	2,10 (2)	2,041 (•,	151 (5)

 $d_{O(N)\cdots O} < 2,73$ Å forte (Brown, 1976; Blessing, 1986). Ainsi parmi les dix liaisons par pont hydrogène appartenant aux deux types O—H…O et H—H…O, quatre sont considérées fortes (*cf.* Tableau 2). Ces dernières concernent les liaisons P—O—H…O liant les groupements minéraux $[H_2PO_4]^-$ en chaînes infinies $[H_2PO_4]_n^{n-}$. La structure cristalline contient le même nombre de donneurs et d'accepteurs engagés dans les liaisons par pont hydrogène: six N(H) et quartre O(H) comme donneurs et dix atomes d'oxygène comme accepteurs. Ces liaisons hydrogène assurent la cohésion et la stabilité de l'édifice cristallin.

Références

- BLESSING, R. H. (1986). Acta Cryst. B42, 613-621.
- BROWN, I. D. (1976). Acta Cryst. A32, 24-31.
- Enraf-Nonius (1980). Structure Determination Package. Enraf-Nonius, Delft, Pays-Bas.
- KAMOUN, S., JOUINI, A. & DAOUD, A. (1990). Acta Cryst. C46, 1481–1483.
- KAMOUN, S., JOUINI, A., KAMOUN, M. & DAOUD, A. (1989). Acta Cryst. C45, 481–482.
- TAKUSAGAWA, F. & KOETZLE, T. F. (1978). Acta Cryst. B34, 1910–1915.
- TAKUSAGAWA, F. & KOETZLE, T. F. (1979). Acta Cryst. B35, 867-877.